Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 32(18): 5055-5070, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37492990

RESUMO

The 'good genes' hypothesis for the evolution of male secondary sexual traits poses that female preferences for such traits are driven by indirect genetic benefits. However, support for the hypothesis remains ambiguous, and, in particular, the genetic basis for the benefits has rarely been investigated. Here, we use seminatural populations of Trinidadian guppies to investigate whether sexually selected traits (orange, black and iridescent colouration, gonopodium length and body size) predict fitness measured as the number of grandoffspring, a metric that integrates across fitness components and sexes. Furthermore, we tested whether two potential sources of genetic benefits-major histocompatibility complex (MHC) genotypes and multilocus heterozygosity (MLH)-are significant predictors of fitness and of the size of sexually selected traits. We found a significant, nonlinear effect of the area of black pigmentation and male body size on the number of grandoffspring, suggesting stabilizing selection on black area, and nonlinear selection favouring small body size. MLH was heritable (h2 = 0.14) and significantly predicted the number of grandoffspring, indicating the potential for genetic benefits based on heterozygosity. We also found support for local heterozygosity effects, which may reflect a noneven distribution of genetic load across the genome. MHC genotype was not significantly associated with any tested fitness component, or with the load of Gyrodactylus parasites. Neither MHC nor MLH was significant predictor of sexually selected traits. Overall, our results highlight the role of heterozygosity in determining fitness, but do not provide support for male sexually selected traits being indicators of genetic quality.


Assuntos
Poecilia , Animais , Masculino , Feminino , Poecilia/genética , Poecilia/parasitologia , Heterozigoto , Fenótipo , Genótipo , Complexo Principal de Histocompatibilidade/genética
2.
J Fish Biol ; 102(6): 1327-1339, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36911993

RESUMO

Genetic identity analysis and PIT (passive integrated transponder) tagging were used to examine the freshwater return rates and phenotypic characteristics of n = 1791 downstream migrating juvenile Salmo trutta in the Burrishoole catchment (northwest Ireland) across the period September 2017 to December 2020. In this system, juveniles out-migrate (move from freshwater into brackish or marine habitats) in every month of the year, with distinct seasonal peaks in spring (March through June; mostly silvered smolts) and autumn (September through December; mostly younger, unsilvered fry or parr). Both types exhibited a sex-bias towards females, which was stronger in spring (78% females) than in autumn outmigrants (67%). Sixty-nine returning fish were matched back to previous juvenile outmigrants, and similar return rates were found for spring outmigrants (5.0%), autumn outmigrants (3.3%) and fish that out-migrated outside of spring or autumn (2.8%). Spring and autumn outmigrants returned at similar dates (typically mid to late July), but autumn fish were away for longer periods (median = 612 days; spring outmigrants = 104 days). Autumn outmigrants were 25% smaller than spring outmigrants at outmigration and 6% smaller on their return, and within both groups smaller/younger outmigrants spent longer away than larger/older outmigrants. Autumn outmigrants were more likely to return unsilvered as "slob" trout (84%) than spring outmigrants (31%), suggesting they make greater use of brackish habitats that might be safer, but less productive, than fully marine habitats. Nonetheless, both types also produced silvered "sea trout" (≥1+ sea-age), implying neither is locked into a single life-history strategy. The findings emphasise that autumn outmigrants and the transitional habitats that support their persistence should not be overlooked in salmonid management and conservation.


Assuntos
Migração Animal , Água Doce , Feminino , Animais , Masculino , Estações do Ano , Truta , Demografia
3.
Anim Microbiome ; 4(1): 53, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109797

RESUMO

BACKGROUND: Rapidly spreading parasitic infections like amoebic gill disease (AGD) are increasingly problematic for Atlantic salmon reared in aquaculture facilities and potentially pose a risk to wild fish species in surrounding waters. Currently, it is not known whether susceptibility to AGD differs between wild and farmed salmon. Wild Atlantic salmon populations are declining and this emerging disease could represent an additional threat to their long-term viability. A better understanding of how AGD affects fish health is therefore relevant for the accurate assessment of the associated risk, both to farming and to the well-being of wild populations. In this study, we assessed the impact of natural exposure to AGD on wild, hybrid and farmed post-smolt Atlantic salmon reared in a sea farm together under common garden conditions. RESULTS: Wild fish showed substantially higher mortality levels (64%) than farmed fish (25%), with intermediate levels for hybrid fish (39%) suggesting that AGD susceptibility has an additive genetic basis. Metabolic rate measures representing physiological performance were similar among the genetic groups but were significantly lower in AGD-symptomatic fish than healthy fish. Gut microbial diversity was significantly lower in infected fish. We observed major shifts in gut microbial community composition in response to AGD infections. In symptomatic fish the relative abundance of key taxa Aliivibrio, Marinomonas and Pseudoalteromonas declined, whereas the abundance of Polaribacter and Vibrio increased compared to healthy fish. CONCLUSIONS: Our results highlight the stress AGD imposes on fish physiology and suggest that low metabolic-rate fish phenotypes may be associated with better infection outcomes. We consider the role increased AGD outbreak events and a warmer future may have in driving secondary bacterial infections and in reducing performance in farmed and wild fish.

4.
Evol Appl ; 14(9): 2319-2332, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34603501

RESUMO

Domestication leads to changes in traits that are under directional selection in breeding programmes, though unintentional changes in nonproduction traits can also arise. In offspring of escaping fish and any hybrid progeny, such unintentionally altered traits may reduce fitness in the wild. Atlantic salmon breeding programmes were established in the early 1970s, resulting in genetic changes in multiple traits. However, the impact of domestication on eye size has not been studied. We measured body size corrected eye size in 4000 salmon from six common garden experiments conducted under artificial and natural conditions, in freshwater and saltwater environments, in two countries. Within these common gardens, offspring of domesticated and wild parents were crossed to produce 11 strains, with varying genetic backgrounds (wild, domesticated, F1 hybrids, F2 hybrids and backcrosses). Size-adjusted eye size was influenced by both genetic and environmental factors. Domesticated fish reared under artificial conditions had smaller adjusted eye size when compared to wild fish reared under identical conditions, in both the freshwater and marine environments, and in both Irish and Norwegian experiments. However, in parr that had been introduced into a river environment shortly after hatching and sampled at the end of their first summer, differences in adjusted eye size observed among genetic groups were of a reduced magnitude and were nonsignificant in 2-year-old sea migrating smolts sampled in the river immediately prior to sea entry. Collectively, our findings could suggest that where natural selection is present, individuals with reduced eye size are maladapted and consequently have reduced fitness, building on our understanding of the mechanisms that underlie a well-documented reduction in the fitness of the progeny of domesticated salmon, including hybrid progeny, in the wild.

5.
Mol Ecol ; 30(21): 5588-5604, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34415650

RESUMO

Natural host populations differ in their susceptibility to infection by parasites, and these intrapopulation differences are still an incompletely understood component of host-parasite dynamics. In this study, we used controlled infection experiments with wild-caught guppies (Poecilia reticulata) and their ectoparasite Gyrodactylus turnbulli to investigate the roles of local adaptation and host genetic composition (immunogenetic and neutral) in explaining differences in susceptibility to infection. We found differences between our four study host populations that were consistent between two parasite source populations, with no indication of local adaptation by either host or parasite at two tested spatial scales. Greater values of host population genetic variability metrics broadly aligned with lower population mean infection intensity, with the best alignments associated with major histocompatibility complex (MHC) "supertypes". Controlling for intrapopulation differences and potential inbreeding variance, we found a significant negative relationship between individual-level functional MHC variability and infection: fish carrying more MHC supertypes experienced infections of lower severity, with limited evidence for supertype-specific effects. We conclude that population-level differences in host infection susceptibility probably reflect variation in parasite selective pressure and/or host evolutionary potential, underpinned by functional immunogenetic variation.


Assuntos
Doenças dos Peixes , Poecilia , Trematódeos , Adaptação Fisiológica , Animais , Doenças dos Peixes/genética , Interações Hospedeiro-Parasita/genética , Imunogenética , Complexo Principal de Histocompatibilidade/genética , Poecilia/genética
7.
Heredity (Edinb) ; 126(3): 548-560, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32985616

RESUMO

Selection pressure from parasites is thought to be a major force shaping the extreme polymorphism of the major histocompatibility complex (MHC) genes, but the modes and consequences of selection remain unclear. Here, we analyse MHC class II and microsatellite diversity in 16 guppy (Poecilia reticulata) populations from two islands (Trinidad and Tobago) that have been separated for at least 10 ky. Within-population MHC diversity was high, but allele sharing was limited within islands and even lower between islands, suggesting relatively fast turnover of alleles. Allelic lineages strongly supported in phylogenetic analyses tended to be island-specific, suggesting rapid lineage sorting, and an expansion of an allelic lineage private to Tobago was observed. New alleles appear to be generated locally at a detectably high frequency. We did not detect a consistent signature of local adaptation, but FST outlier analysis suggested that balancing selection may be the more general process behind spatial variation in MHC allele frequencies in this system, particularly within Trinidad. We found no evidence for divergent allele advantage within populations, or for decreased genetic structuring of MHC supertypes compared to MHC alleles. The dynamic and complex nature of MHC evolution we observed in guppies, coupled with some evidence for balancing selection shaping MHC allele frequencies, are consistent with Red Queen processes of host-parasite coevolution.


Assuntos
Poecilia , Alelos , Animais , Genes MHC da Classe II , Variação Genética , Filogenia , Poecilia/genética , Seleção Genética
8.
Parasite Immunol ; 42(12): e12782, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32738163

RESUMO

Gyrodactylids are ubiquitous ectoparasites of teleost fish, but our understanding of the host immune response against them is fragmentary. Here, we used RNA-Seq to investigate genes involved in the primary response to infection with Gyrodactylus bullatarudis on the skin of guppies, Poecilia reticulata, an important evolutionary model, but also one of the most common fish in the global ornamental trade. Analysis of differentially expressed genes identified several immune-related categories, including IL-17 signalling pathway and Th17 cell differentiation, cytokine-cytokine receptor interaction, chemokine signalling pathway, NOD-like receptor signalling pathway, natural killer cell-mediated cytotoxicity and pathways involved in antigen recognition, processing and presentation. Components of both the innate and the adaptive immune responses play a role in response to gyrodactylid infection. Genes involved in IL-17/Th17 response were particularly enriched among differentially expressed genes, suggesting a significant role for this pathway in fish responses to ectoparasites. Our results revealed a sizable list of genes potentially involved in the teleost-gyrodactylid immune response.


Assuntos
Ectoparasitoses/veterinária , Doenças dos Peixes/imunologia , Platelmintos/imunologia , Imunidade Adaptativa/genética , Animais , Ectoparasitoses/imunologia , Ectoparasitoses/parasitologia , Doenças dos Peixes/parasitologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/genética , Poecilia , RNA-Seq
9.
Ecol Evol ; 10(4): 1762-1783, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32128115

RESUMO

The degree of natal philopatry relative to natal dispersal in animal populations has important demographic and genetic consequences and often varies substantially within species. In salmonid fishes, lakes have been shown to have a strong influence on dispersal and gene flow within catchments; for example, populations spawning in inflow streams are often reproductively isolated and genetically distinct from those spawning in relatively distant outflow streams. Less is known, however, regarding the level of philopatry and genetic differentiation occurring at microgeographic scales, for example, where inflow and outflow streams are separated by very small expanses of lake habitat. Here, we investigated the interplay between genetic differentiation and fine-scale spawning movements of brown trout between their lake-feeding habitat and two spawning streams (one inflow, one outflow, separated by <100 m of lake habitat). Most (69.2%) of the lake-tagged trout subsequently detected during the spawning period were recorded in just one of the two streams, consistent with natal fidelity, while the remainder were detected in both streams, creating an opportunity for these individuals to spawn in both natal and non-natal streams. The latter behavior was supported by genetic sibship analysis, which revealed several half-sibling dyads containing one individual that was sampled as a fry in the outflow and another that was sampled as fry in the inflow. Genetic clustering analyses in conjunction with telemetry data suggested that asymmetrical dispersal patterns were occurring, with natal fidelity being more common among individuals originating from the outflow than the inflow stream. This was corroborated by Bayesian analysis of gene flow, which indicated significantly higher rates of gene flow from the inflow into the outflow than vice versa. Collectively, these results reveal how a combination of telemetry and genetics can identify distinct reproductive behaviors and associated asymmetries in natal dispersal that produce subtle, but nonetheless biologically relevant, population structuring at microgeographic scales.

10.
Mol Ecol ; 29(8): 1494-1507, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32222008

RESUMO

Determining the molecular basis of parasite adaptation to its host is an important component in understanding host-parasite coevolution and the epidemiology of parasitic infections. Here, we investigate short- and long-term adaptive evolution in the eukaryotic parasite Gyrodactylus bullatarudis infecting Caribbean guppies (Poecilia reticulata), by comparing the reference genome of Tobagonian G. bullatarudis with other Platyhelminthes, and by analysing resequenced samples from local Trinidadian populations. At the macroevolutionary timescale, we observed duplication of G-protein and serine proteases genes, which are probably important in host-parasite arms races. Serine protease also showed strong evidence of ongoing, diversifying selection at the microevolutionary timescale. Furthermore, our analyses revealed that a hybridization event, involving two divergent genomes, followed by recombination has dramatically affected the genetic composition of Trinidadian populations. The recombinant genotypes invaded Trinidad and replaced local parasites in all populations. We localized more than 300 genes in regions fixed in local populations for variants of different origin, possibly due to diversifying selection pressure from local host populations. In addition, around 70 genes were localized in regions identified as heterozygous in some, but not all, individuals. This pattern is consistent with a very recent spread of recombinant parasites. Overall, our results are consistent with the idea that recombination between divergent genomes can result in particularly successful parasites.


Assuntos
Doenças dos Peixes , Parasitos , Poecilia , Animais , Região do Caribe , Duplicação Gênica , Humanos , Poecilia/genética , Recombinação Genética , Trinidad e Tobago
12.
Proc Natl Acad Sci U S A ; 115(7): 1552-1557, 2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29339521

RESUMO

The major histocompatibility complex (MHC) is crucial to the adaptive immune response of vertebrates and is among the most polymorphic gene families known. Its high diversity is usually attributed to selection imposed by fast-evolving pathogens. Pathogens are thought to evolve to escape recognition by common immune alleles, and, hence, novel MHC alleles, introduced through mutation, recombination, or gene flow, are predicted to give hosts superior resistance. Although this theoretical prediction underpins host-pathogen "Red Queen" coevolution, it has not been demonstrated in the context of natural MHC diversity. Here, we experimentally tested whether novel MHC variants (both alleles and functional "supertypes") increased resistance of guppies (Poecilia reticulata) to a common ectoparasite (Gyrodactylus turnbulli). We used exposure-controlled infection trials with wild-sourced parasites, and Gyrodactylus-naïve host fish that were F2 descendants of crossed wild populations. Hosts carrying MHC variants (alleles or supertypes) that were new to a given parasite population experienced a 35-37% reduction in infection intensity, but the number of MHC variants carried by an individual, analogous to heterozygosity in single-locus systems, was not a significant predictor. Our results provide direct evidence of novel MHC variant advantage, confirming a fundamental mechanism underpinning the exceptional polymorphism of this gene family and highlighting the role of immunogenetic novelty in host-pathogen coevolution.


Assuntos
Ectoparasitoses/veterinária , Evolução Molecular , Interações Hospedeiro-Parasita/genética , Imunogenética , Complexo Principal de Histocompatibilidade/imunologia , Poecilia/genética , Seleção Genética , Animais , Ectoparasitoses/imunologia , Ectoparasitoses/parasitologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/parasitologia , Complexo Principal de Histocompatibilidade/genética , Poecilia/parasitologia
14.
Mol Ecol ; 25(17): 4234-46, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27411090

RESUMO

Understanding the spatial scale at which selection acts upon adaptive genetic variation in natural populations is fundamental to our understanding of evolutionary ecology, and has important ramifications for conservation. The environmental factors to which individuals of a population are exposed can vary at fine spatial scales, potentially generating localized patterns of adaptation. Here, we compared patterns of neutral and major histocompatibility complex (MHC) variation within an island population of Berthelot's pipit (Anthus berthelotii) to assess whether landscape-level differences in pathogen-mediated selection generate fine-scale spatial structuring in these immune genes. Specifically, we tested for spatial associations between the distribution of avian malaria, and the factors previously shown to influence that distribution, and MHC variation within resident individuals. Although we found no overall genetic structure across the population for either neutral or MHC loci, we did find localized associations between environmental factors and MHC variation. One MHC class I allele (ANBE48) was directly associated with malaria infection risk, while the presence of the ANBE48 and ANBE38 alleles within individuals correlated (positively and negatively, respectively) with distance to the nearest poultry farm, an anthropogenic factor previously shown to be an important determinant of disease distribution in the study population. Our findings highlight the importance of considering small spatial scales when studying the patterns and processes involved in evolution at adaptive loci.


Assuntos
Evolução Molecular , Variação Genética , Genética Populacional , Malária Aviária/genética , Passeriformes/genética , Passeriformes/imunologia , Animais , Meio Ambiente , Ilhas , Complexo Principal de Histocompatibilidade/genética , Seleção Genética
15.
Immunogenetics ; 67(3): 149-62, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25515684

RESUMO

Genes of the major histocompatibility complex (MHC) code for receptors that are central to the adaptive immune response of vertebrates. These genes are therefore important genetic markers with which to study adaptive genetic variation in the wild. Next-generation sequencing (NGS) has increasingly been used in the last decade to genotype the MHC. However, NGS methods are highly prone to sequencing errors, and although several methodologies have been proposed to deal with this, until recently there have been no standard guidelines for the validation of putative MHC alleles. In this study, we used the 454 NGS platform to screen MHC class I exon 3 variation in a population of the island endemic Berthelot's pipit (Anthus berthelotii). We were able to characterise MHC genotypes across 309 individuals with high levels of repeatability. We were also able to determine alleles that had low amplification efficiencies, whose identification within individuals may thus be less reliable. At the population level we found lower levels of MHC diversity in Berthelot's pipit than in its widespread continental sister species the tawny pipit (Anthus campestris), and observed trans-species polymorphism. Using the sequence data, we identified signatures of gene conversion and evidence of maintenance of functionally divergent alleles in Berthelot's pipit. We also detected positive selection at 10 codons. The present study therefore shows that we have an efficient method for screening individual MHC variation across large datasets in Berthelot's pipit, and provides data that can be used in future studies investigating spatio-temporal patterns and scales of selection on the MHC.


Assuntos
Genes MHC Classe I , Passeriformes/genética , Filogenia , Polimorfismo Genético , Alelos , Distribuição Animal , Animais , Éxons , Conversão Gênica , Frequência do Gene , Especiação Genética , Passeriformes/classificação , Passeriformes/imunologia , Seleção Genética , Análise de Sequência de DNA , Espanha
16.
Mol Ecol ; 22(8): 2301-12, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23379838

RESUMO

Postcopulatory sperm storage can serve a range of functions, including ensuring fertility, allowing delayed fertilization and facilitating sexual selection. Sperm storage is likely to be particularly important in wide-ranging animals with low population densities, but its prevalence and importance in such taxa, and its role in promoting sexual selection, are poorly known. Here, we use a powerful microsatellite array and paternal genotype reconstruction to assess the prevalence of sperm storage and test sexual selection hypotheses of genetic biases to paternity in one such species, the critically endangered hawksbill turtle, Eretmochelys imbricata. In the majority of females (90.7%, N = 43), all offspring were sired by a single male. In the few cases of multiple paternity (9.3%), two males fertilized each female. Importantly, the identity and proportional fertilization success of males were consistent across all sequential nests laid by individual females over the breeding season (up to five nests over 75 days). No males were identified as having fertilized more than one female, suggesting that a large number of males are available to females. No evidence for biases to paternity based on heterozygosity or relatedness was found. These results indicate that female hawksbill turtles are predominantly monogamous within a season, store sperm for the duration of the nesting season and do not re-mate between nests. Furthermore, females do not appear to be using sperm storage to facilitate sexual selection. Consequently, the primary value of storing sperm in marine turtles may be to uncouple mating and fertilization in time and avoid costly re-mating.


Assuntos
Preferência de Acasalamento Animal , Paternidade , Espermatozoides/fisiologia , Tartarugas/fisiologia , Animais , Feminino , Fertilização/fisiologia , Genótipo , Heterozigoto , Masculino , Repetições de Microssatélites/genética , Reprodução/genética , Reprodução/fisiologia , Tartarugas/genética
17.
Sci Total Environ ; 398(1-3): 26-33, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18440598

RESUMO

There is increasing concern about pharmaceuticals entering surface waters and the impacts these compounds may have on aquatic organisms. Many contaminants, including pharmaceuticals, are not completely removed by wastewater treatment. Discharge of effluent into surface waters results in chronic low-concentration exposure of aquatic organisms to these compounds, with unknown impacts. Exposure of virulent bacteria in wastewater to antibiotic residues may also induce resistance, which could threaten human health. The purpose of this study was to provide information on pharmaceutical threats to the environment. A preliminary risk assessment database for common pharmaceuticals was created and put into a web-accessible database named "Pharmaceuticals in the Environment, Information for Assessing Risk" (PEIAR) to help others evaluate potential risks of pharmaceutical contaminants in the environment. Information from PEIAR was used to prioritize compounds that may threaten the environment, with a focus on marine and estuarine environments. The pharmaceuticals were ranked using five different combinations of physical-chemical and toxicological data, which emphasized different risks. The results of the ranking methods differed in the compounds identified as high risk; however, drugs from the central nervous system, cardiovascular, and anti-infective classes were heavily represented within the top 100 drugs in all rankings. Anti-infectives may pose the greatest overall risk based upon our results using a combination of factors that measure environmental transport, fate, and aquatic toxicity. The dataset is also useful for highlighting information that is still needed to assuredly assess risk.


Assuntos
Bases de Dados Factuais , Poluentes Ambientais/toxicidade , Preparações Farmacêuticas , Medição de Risco , Animais , Bactérias/efeitos dos fármacos , Eucariotos/efeitos dos fármacos , Plantas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...